

PRODUCT DATA SHEET

Sambutoxin

Code No.: BIA-S3085

Pack sizes: 0.5 mg, 2.5 mg

Synonyms

(-)-Sambutoxin

Specifications

CAS #	:	160047-56-3
Molecular Formula	:	C ₂₈ H ₃₉ NO ₄
Molecular Weight	:	453.6
Source	:	<i>Fusarium</i> sp.
Appearance	:	Tan solid
Purity	:	>95% by HPLC
Long Term Storage	:	-20°C
Solubility	:	Soluble in methanol and DMSO.

Application Notes

Sambutoxin is a 4-hydroxy-2-pyridone fungal metabolite initially produced by Fusarium samucinum isolated from rotted potato tubers by Kim and co-workers, Seoul National University, Korea in 1995. Sambutoxin is a potent and selective inhibitor of mitochondrial respiration. Sambutoxin inhibits platelet aggregation, decreases platelet activating factor-induced disaggregation time in a dose-dependent manner and decreases thrombin and arachidonic acid-induced ATP release. Sambutoxin has remarkable antiproliferative effects, inhibiting ROS production and inducing G2/M arrest and apoptosis by activating the mitochondrial apoptosis pathway.

References

- 1. Kim J-C. et al. (1995). Sambutoxin: A new mycotoxin isolated from Fusarium sambucinum. Tetrahedron Lett., 36, 1047.
- 2. Kawai K. et al. (1997). A novel respiratory chain inhibitor, sambutoxin from Fusarium sambucinum. Cereal Res. Commun., 25, 325.
- 3. Hong C.M. et al. (1998). Effects of sambutoxin on the rabbit platelet aggregation. J. Toxicol. Public Health, 14, 333.
- 4. Li L-N. et al. (2018). Discovery and characterization of 4-hydroxy-2-pyridone derivative sambutoxin as a potent and promising anticancer drug candidate: Activity and molecular mechanism. Mol. Pharmaceutics, 15, 4898.

For in vitro laboratory use only. Not for human or animal use.

Updated: 13 September 2024

© Copyright BioAustralis 2024